Izvestiya of Saratov University.

Sociology. Politology

ISSN 1818-9601 (Print)
ISSN 2541-8998 (Online)


For citation:

Zvonok A. A. Application of artificially generated data in development and implementation of mathematical-statistical methods in the problem field of sociology. Izvestiya of Saratov University. Sociology. Politology, 2024, vol. 24, iss. 4, pp. 389-398. DOI: 10.18500/1818-9601-2024-24-4-389-398, EDN: GKTLGY

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Full text PDF(Ru):
Language: 
Russian
Article type: 
Article
UDC: 
51-77:303.1
EDN: 
GKTLGY

Application of artificially generated data in development and implementation of mathematical-statistical methods in the problem field of sociology

Autors: 
Zvonok Aleksandr A., Lugansk State Pedagogical University
Abstract: 

The article touches on the general issues, related to the use of artificially generated data in the process of development and implementation of mathematical-statistical methods in the sociological sphere. The main directions of application of simulations in sociology are briefl y described. The area of responsibility of sociologists in relation to mathematicians in the verification of mathematical-statistical methods and their integration into sociological scientifi c fi elds is outlined. The author’s classifi cation of mathematical and statistical methods is given depending on the need to use artifi cial data for their verifi cation. The classifi cation of simulations in the verifi cation of mathematical-statistical methods according to the degree of signifi cance of scientifi c projects is explained, while each class was accompanied by a real case within the framework of sociological problems.The experiment with frequency confi dence intervals by A. Kryshtanovsky, using artifi cial samples of sociological survey data, was described as a project of low signifi cance. The example of a scientifi c case of moderate signifi cance was the study by J. C. F. de Winter and D. Dodou of the prospects for using Student's t-test to analyze samples of observations, expressed in the ordinal Likert scale. The example of high-level scientifi c simulation was the author's own experience, associated with the introduction of Bayesian methodology into empirical sociology in the context of developing methods for analyzing eff ect sizes when conducting comparative binomial social experiments with binary data. The study raises questions on the requirements for publishing methodological studies using the generated data. The standards for publishing simulation studies are outlined, ranging from classical general conventions to the important standards, adopted in sensitive areas such as medical research.

Reference: 
  1. Gilbert N., Troitzsch K. G. Simulation for the Social Scientist. New York : Open University Press, 2005. 295 p.
  2. Толстова Ю. Н. Математическое моделирование социальных процессов и социология // Социологические исследования. 2018. № 9. C. 104–112. https://doi.org/10.31857/S013216250001965-4, EDN: YMRIOD
  3. Harwell Dr. M., Kohli Dr. N., Peralta-Torres Ya. A survey of reporting practices of computer simulation studies in statistical research // The American Statistician. 2017. Vol. 72, iss. 4. P. 321–327. https://doi.org/10.1080/00031305.2017.1342692
  4. Hauck W. W., Anderson S. A survey regarding the reporting of simulation studies // The American Statistician. 1984. Vol. 38, iss. 3. P. 214–216. https://doi.org/ 10.1080/00031305.1984.10483206
  5. Зюзьков В. М. Эксперименты в теории чисел. Томск : Изд-во НТЛ, 2019. 348 с.
  6. Thall P. F. Bayesian clinical trial design in a cancer center // CHANCE. 2001. Vol. 14, iss. 3. P. 23–28. https://doi.org/10.1080/09332480.2001.10542279
  7. Киричевский М., Комарова С. Верификация методики измерений в химической лаборатории // Роль технического регулирования и стандартизации в эпоху цифровой экономики : сб. ст. участников III Междунар. науч.-практ. конф. молодых ученых (Екатеринбург, 25 ноября 2021 г.). Екатеринбург : ИД «Ажур», 2021. С. 262–268. EDN: HYPUDV
  8. O’Kelly M., Anisimov V., Campbell C., Hamilton S. Proposed best practice for projects that involve modeling and simulation // Pharmaceutical Statistics. 2016. Vol. 16, iss. 2. P. 107–113. https://doi.org/10.1002/pst.1789
  9. Добреньков В. И., Кравченко А. И. Фундаментальная социология : в 15 т. Т. 2. Эмпирическая и прикладная социология. М. : ИНФРА-М, 2004. 986 с.
  10. Winter J. de, Dodou D. Five-Point Likert Items: t test versus Mann – Whitney – Wilcoxon // Practical Assessment, Research & Evaluation. 2010. Vol. 15. Art. 11. https://doi.org/10.7275/bj1p-ts64
  11. Звонок А. А. Байесовская экспериментальная оценка социальных технологий: методологические и методические аспекты // NOMOTHETIKA: Философия. Социология. Право. 2024. Т. 49, № 1. C. 26–38. https://doi.org/10.52575/2712-746X-2024-49-1-26-38, EDN: DYXJUD
  12. Cohen J. Statistical power analysis for the behavioral sciences. New York : Lawrence Erlbaum Associates, 1988. 567 p.
  13. Звонок А. А. Байесовское моделирование биномиальных экспериментов в социологии: проблемный анализ // Цифровая социология. 2024. Т. 7, № 1. С. 14–25. https://doi.org/10.26425/2658-347X-2024-7-1-14-25, EDN: EUFDXE
  14. Sauro J., Lewis J. R. Quantifying the User Experience. Practical Statistics for User Research. Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo : Elsevier, 2012. 295 p.
  15. Sawilowsky S. New effect size rules of thumb // Journal of Modern Applied Statistical Methods. 2009. Vol. 8, iss. 2. P. 467–474. https://doi.org/10.22237/ jmasm/1257035100
  16. Херцог М. Х., Фрэнсис Г., Кларк А. Статистика и планирование эксперимента для непосвященных: как отучить статистику лгать. М. : ДМК Пресс, 2023. 174 с.
  17. Schrodt P. A. Seven deadly sins of contemporary quantitative political analysis // Journal of Peace Research. 2014. Vol. 51, iss. 2. P. 287–300. https://doi.org/10.1177/0022343313499597
  18. Hoaglin D. C., Andrews D. F. The reporting of computation-based results in statistics // The American Statistician. 1975. Vol. 29, iss. 3. P. 122–126. https:// doi.org/10.1080/00031305.1975.10477393
  19. Burton A., Altman D. G., Royston P., Holder R. L. The design of simulation studies in medical statistics // Statistics in Medicine. 2006. Vol. 25, iss. 24. P. 4279– 4292. https://doi.org/10.1002/sim.2673
Received: 
22.05.2024
Accepted: 
09.08.2024
Available online: 
29.11.2024
Short text (in English):